On the Davenport constant and group algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Davenport Constant and Group Algebras

For a finite abelian group G and a splitting field K of G, let d(G, K) denote the largest integer l ∈ N for which there is a sequence S = g1 · . . . · gl over G such that (X g1 − a1) · . . . · (Xl − al) 6= 0 ∈ K[G] for all a1, . . . , al ∈ K . If D(G) denotes the Davenport constant of G, then there is the straightforward inequality D(G)−1 ≤ d(G, K). Equality holds for a variety of groups, and a...

متن کامل

Davenport constant with weights

For the cyclic group G = Z/nZ and any non-empty A ∈ Z. We define the Davenport constant of G with weight A, denoted by DA(n), to be the least natural number k such that for any sequence (x1, · · · , xk) with xi ∈ G, there exists a non-empty subsequence (xj1, · · · , xjl) and a1, · · · , al ∈ A such that ∑l i=1 aixji = 0. Similarly, we define the constant EA(n) to be the least t ∈ N such that fo...

متن کامل

Upper Bounds for the Davenport Constant

We prove that for all but a certain number of abelian groups of order n the Davenport constant is at most nk + k − 1 for positive integers k ≤ 7. For groups of rank three we improve on the existing bound involving the Alon-Dubiner constant.

متن کامل

Remarks on a generalization of the Davenport constant

A generalization of the Davenport constant is investigated. For a finite abelian group G and a positive integer k, let D k (G) denote the smallest ℓ such that each sequence over G of length at least ℓ has k disjoint non-empty zero-sum subsequences. For general G, expanding on known results, upper and lower bounds on these invariants are investigated and it is proved that the sequence (D k (G)) ...

متن کامل

Remarks on the plus-minus weighted Davenport constant

For (G,+) a finite abelian group the plus-minus weighted Davenport constant, denoted D±(G), is the smallest l such that each sequence g1 . . . gl over G has a weighted zero-subsum with weights +1 and −1, i.e., there is a non-empty subset I ⊂ {1, . . . , l} such that ∑ i∈I aigi = 0 for ai ∈ {+1,−1}. We present new bounds for this constant, mainly lower bounds, and also obtain the exact value of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2010

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm121-2-2